Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(3): e1012104, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38512977

RESUMO

The interaction between foot-and-mouth disease virus (FMDV) and the host is extremely important for virus infection, but there are few researches on it, which is not conducive to vaccine development and FMD control. In this study, we designed a porcine genome-scale CRISPR/Cas9 knockout library containing 93,859 single guide RNAs targeting 16,886 protein-coding genes, 25 long ncRNAs, and 463 microRNAs. Using this library, several previously unreported genes required for FMDV infection are highly enriched post-FMDV selection in IBRS-2 cells. Follow-up studies confirmed the dependency of FMDV on these genes, and we identified a functional role for one of the FMDV-related host genes: TOB1 (Transducer of ERBB2.1). TOB1-knockout significantly inhibits FMDV infection by positively regulating the expression of RIG-I and MDA5. We further found that TOB1-knockout led to more accumulation of mRNA transcripts of transcription factor CEBPA, and thus its protein, which further enhanced transcription of RIG-I and MDA5 genes. In addition, TOB1-knockout was shown to inhibit FMDV adsorption and internalization mediated by EGFR/ERBB2 pathway. Finally, the FMDV lethal challenge on TOB1-knockout mice confirmed that the deletion of TOB1 inhibited FMDV infection in vivo. These results identify TOB1 as a key host factor involved in FMDV infection in pigs.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Animais , Camundongos , Receptores ErbB/metabolismo , Febre Aftosa/genética , Vírus da Febre Aftosa/genética , Regulação da Expressão Gênica , RNA Guia de Sistemas CRISPR-Cas , Suínos
2.
mBio ; 14(4): e0060623, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37417777

RESUMO

African swine fever virus (ASFV) causes acute hemorrhagic infectious disease in pigs. The ASFV genome encodes various proteins that enable the virus to escape innate immunity; however, the underlying mechanisms are poorly understood. The present study found that ASFV MGF-360-10L significantly inhibits interferon (IFN)-ß-triggered STAT1/2 promoter activation and the production of downstream IFN-stimulated genes (ISGs). ASFV MGF-360-10L deletion (ASFV-Δ10L) replication was impaired compared with the parental ASFV CN/GS/2018 strain, and more ISGs were induced by the ASFV-Δ10L in porcine alveolar macrophages in vitro. We found that MGF-360-10L mainly targets JAK1 and mediates its degradation in a dose-dependent manner. Meanwhile, MGF-360-10L also mediates the K48-linked ubiquitination of JAK1 at lysine residues 245 and 269 by recruiting the E3 ubiquitin ligase HERC5 (HECT and RLD domain-containing E3 ubiquitin protein ligase 5). The virulence of ASFV-Δ10L was significantly lower than that of the parental strain in vivo, which indicates that MGF-360-10L is a novel virulence factor of ASFV. Our findings elaborate the novel mechanism of MGF-360-10L on the STAT1/2 signaling pathway, expanding our understanding of the inhibition of host innate immunity by ASFV-encoded proteins and providing novel insights that could contribute to the development of African swine fever vaccines. IMPORTANCE African swine fever outbreaks remain a concern in some areas. There is no effective drug or commercial vaccine to prevent African swine fever virus (ASFV) infection. In the present study, we found that overexpression of MGF-360-10L strongly inhibited the interferon (IFN)-ß-induced STAT1/2 signaling pathway and the production of IFN-stimulated genes (ISGs). Furthermore, we demonstrated that MGF-360-10L mediates the degradation and K48-linked ubiquitination of JAK1 by recruiting the E3 ubiquitin ligase HERC5. The virulence of ASFV with MGF-360-10L deletion was significantly less than parental ASFV CN/GS/2018. Our study identified a new virulence factor and revealed a novel mechanism by which MGF-360-10L inhibits the immune response, thus providing new insights into the vaccination strategies against ASFV.

3.
J Immunol ; 205(8): 2137-2145, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32929042

RESUMO

IgG subclass diversification is common in placental mammals. It has been well documented in humans and mice that different IgG subclasses, with diversified functions, synergistically regulate humoral immunity. However, our knowledge on the genomic and functional diversification of IgG subclasses in the pig, a mammalian species with high agricultural and biomedical importance, is incomplete. Using bacterial artificial chromosome sequencing and newly assembled genomes generated by the PacBio sequencing approach, we characterized and mapped the IgH C region gene locus in three indigenous Chinese breeds (Erhualian, Xiang, and Luchuan) and compared them to that of Duroc. Our data revealed that IGHG genes in Chinese pigs differ from the Duroc, whereas the IGHM, IGHD, IGHA, and IGHE genes were all single copy and highly conserved in the pig breeds examined. Most striking were differences in numbers of IGHG genes: there are seven genes in Erhualian pigs, six in the Duroc, but only five in Xiang pigs. Phylogenetic analysis suggested that all reported porcine IGHG genes could be classified into nine subclasses: IGHG1, IGHG2a, IGHG2b, IGHG2c, IGHG3, IGHG4, IGHG5a, IGHG5b, and IGHG5c. Using sequence information, we developed a mouse mAb specific for IgG3. This study offers a starting point to investigate the structure-function relationship of IgG subclasses in pigs.


Assuntos
Cruzamento , Loci Gênicos , Cadeias Pesadas de Imunoglobulinas/genética , Filogenia , Animais , Cadeias Pesadas de Imunoglobulinas/imunologia , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...